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Abstract This study analyzed time series data from six GPS stations within the Tatun Volcano Group
(TVG), a long‐dormant volcanic system in northern Taiwan, using multichannel singular spectrum analysis to
search for potential spatiotemporally correlated transient deformations. A notable cycle of transient deformation
was identified from 2015 to 2020, characterized by ground subsidence and uplift of up to 10 mm, accompanied
by asymmetric horizontal motions directed inward and outward toward Dayoukeng, the largest fumarole and
hydrothermal area in TVG. Evidence from earthquake focal mechanisms and gas composition, along with
preliminary source modeling, suggest that these transient phases were likely caused by the pressure change of
shallow hydrothermal systems beneath Dayoukeng. Further analysis of time series data from three long‐
operating GPS stations revealed similar patterns of transient motion in the area from 2006 to 2015, indicating
that TVG has experienced cyclical deformation, akin to many other volcanic systems worldwide.

Plain Language Summary Monitoring ground deformation in volcanoes is crucial for understanding
the underlying processes and providing early warnings of potential hazards. Previous geodetic studies of the
long‐dormant Tatun Volcano Group (TVG) in northern Taiwan relied on sporadic data, leading to incomplete
insights into its time‐varying deformation behavior. Continuous GPS, however, allows for accurate tracking of
surface movements over time, including short‐term changes caused by intermittent volcanic activity. This first
GPS study of TVG employed a method called multichannel singular spectrum analysis to identify transient
signals in noisy data from six stations. Significant ground deformation was revealed between 2015 and 2020,
with the ground sinking and rising by up to 10 mm, along with horizontal movements toward and away from
Dayoukeng, a major steam vent area in TVG. This sinking is likely related to changes in the shallow hot water
and steam systems beneath Dayoukeng, as suggested by anomalies in earthquake activity and surface gas
composition. Additional GPS data from 2006 to 2015 revealed that TVG experienced recurring cycles of ground
deformation, closely correlated with local seismic activity.

1. Introduction
The Tatun Volcano Group (TVG) covers an area of ∼400 km2 in northern Taiwan, comprising over twenty
Quaternary volcanoes (Chen et al., 2007) and the Miocene active Shanchiao normal fault that straddles the area
(Figure 1). Although there hasn't been a recorded eruption in recent history, volcanic activity is still evident
through features such as hot springs and fumaroles. Give the proximity of the Taipei metropolis, home to ∼7
million people, and two nuclear power plants (Figure 1), the Taiwan Volcano Observatory at Tatun (TVO) has
monitored volcanic activity since the early 2000s using various instruments. Numerous evidence such as dense
micro‐earthquakes (Pu, Lin, Lai, et al., 2020), composition of emitted volcanic gases (Lee et al., 2008; Yang
et al., 1999), and seismic images of magma reservoir (H.‐H. Huang et al., 2021; Lin, 2016) suggest that the area is
experiencing ongoing volcanic activities.

Despite several geodetic measurements conducted in and around the TVG, transient ground deformation in this
area has not been extensively studied. Murase et al. (2014) conducted precise leveling surveys from 2006 to 2013
around Mt. Cising and the Dayoukeng fumarole, areas known for frequent earthquake swarms and abundant
hydrothermal activity in the TVG region (Figure 1). They observed episodes of ground uplift and subsidence
during this period, with amplitudes reaching up to 10 mm, and proposed a two‐spherical‐source model to
represent shallow hydrothermal reservoirs responsible for the transient deformation. Tung et al. (2016) calculated
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the horizontal ground motion using 14 GPS stations in the Taipei metropolitan area and identified a WNW–ESE
extensional principal strain rate of 0.28 μstrian/yr near TVG. By integrating data from 112 GPS stations (both
continuous and campaign modes) with 43 InSAR images in northern Taiwan, Chang et al. (2017) observed
episodes of subsidence (2003–2008) and uplift (2007–2011) with average rates reaching up to ∼4 mm/yr and a
principal strain rate of 0.23 μstrian/yr in the TVO area, despite the InSAR data being noisy and sparse.

While several continuous GPS stations have been operated in TVG for monitoring volcanic unrest, ground
deformation caused by volcanic activity in this area can be too localized and subtle to be detected through GPS
time series. In fact, numerous challenges can arise when attempting to detect short‐term transient ground motions
using this method. First, most transient signals exhibit non‐linear trends that cannot be easily modeled using
traditional least‐squares fitting of simple analytical functions like linear trends and periodic components (e.g.,
Nikolaidis, 2002). Second, temporally and spatially correlated noise in GPS time series could obscure signals
(e.g., Bos et al., 2013; Langbein, 2017). Lastly, visually inspecting each time series in a GPS network for common
transient signals is time‐consuming and potentially unreliable. These factors may cause the relatively low ground
deformation signals from volcanic activity to go unnoticed.

While various complex processes can interact to cause transient ground deformation, such motion often appears
as nonlinear cyclical trends in GPS time series common to multiple stations in a volcanic area (e.g., Chang

Figure 1. Map showing the Tatun Volcano Group (TVG) area and the six GPS stations used in this study (red triangles).
Orange triangles mark volcanic features mentioned in this study: Mt. Cising (MCS), the Dayoukeng fumarole (DYK), and
Mt. Shamao (MSM). Purple dashed lines represent leveling survey routes in Murase et al. (2014). Color circles show 2014–
2017 relocated seismicity in Pu et al. (2021a), with the three rectangles representing, from north to south, the January 2019
(Peak 4), October 2009 (Peak 1) and April–June 2015 (Peak 3), and February 2014 (Peak 2) sequences (see Figure 4a and the
main text). The pink diamond marks the Zhuzihu weather station, and two green rectangles in the insert label nuclear power
plants.
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et al., 2010; Fournier et al., 2009; Ji et al., 2017; Walwer et al., 2016). Based on these findings, we employed a
data‐adaptive method known as Multichannel Singular Spectrum Analysis (MSSA) to extract underlying cyclical
and primary signals from noisy GPS time series. In the following sections, we first outline the MSSA method-
ology applied to three‐component time series data from six GPS stations in the TVG. Two episodes of spatially
and temporally correlated transient deformation were identified, and potential mechanisms for these events were
investigated using seismic and geochemical evidence. These results provide insight into the correlation between
spatiotemporal variations in transient deformation and volcanic processes in the TVG.

2. Methods and GPS Data
Multichannel Singular Spectrum Analysis (MSSA) is a data‐adaptive, non‐parametric technique that analyzes
multiple time series (channels) simultaneously, utilizing their spatiotemporal correlations to extract common
signal components, which can be categorized into trends, oscillatory patterns, and noise (Ghil et al., 2002; Groth
& Ghil, 2015). Several studied have shown that MSSA can efficiently extract transient and seasonal signals from
noisy data sets, enabling the identification of spatially coherent deformation patterns in GNSS networks (e.g.,
Walwer et al., 2016, 2022; Zhang et al., 2017). We briefly explained the MSSA methodology in Text S1 in
Supporting Information S1, and refer readers to Ghil et al. (2002), Groth and Ghil (2011), and Walwer
et al. (2016) for detailed information.

The current GPS network in TVG includes 14 operational GPS stations, and we selected six of these with the
longest overlapping observation periods, from March 2013 to April 2021 (Figure 1). This results in a total of 18
time series (channels), each comprising 2,946 daily coordinate solutions processed with the GipsyX software
package and the Precise Point Positioning technique (Bertiger et al., 2020; Zumberge et al., 1997). See Text S1 in
Supporting Information S1 for more information on our GPS data processing.

Before conducting MSSA, we applied the least‐squares method to detrend each coordinate time series for
removing the secular trend and known offsets. We did this because secular trends represent steady‐state ground
deformation and usually account for most of the data variance, while offsets from earthquakes or equipment
changes can interfere with time series reconstruction. By removing these components, MSSA can more effec-
tively extract transient deformation that generally contributes less variance than the secular motion (Walwer
et al., 2016). The secular motion of the six GPS stations indicates a principal strain rate of 0.18 ± 0.11 μstrain/yr,
with an azimuth of ∼136° that is nearly perpendicular to the strike of the nearby Shanchiao normal fault
(Figure 1).

Furthermore, GPS time series often contain gaps that can pose challenges in analyzing spatiotemporal variability
using the MSSA method. To address this, we used the kSpectra Toolkit software (Ghil et al., 2002) to interpolate
missing data in each time series through an iterative SSA method (Kondrashov & Ghil, 2006).

3. Transient Deformation in the TVG Area
Similar to its single channel version, SSA, MSSA begins by transforming each detrended time series into a
sequence of overlapping views using a sliding window approach. The window length represents a trade‐off
between the amount of information extracted and its statistical significance, thus requiring careful consider-
ation (Ghil et al., 2002). We tested four different window lengths (400, 500, 600, and 700 days) and found that
they extract similar patterns of transient and periodic displacements from the 18 GPS time series (see Text S1 in
Supporting Information S1).We chose a 500‐day window for the following analysis, including the examination of
three long‐operated stations in Section 4.2.

The results of our MSSA revealed that the first four spectra are notably larger than the others, accounting for the
majority of the data variance (∼27.1%, see Figure S3a in Text S1 in Supporting Information S1). The waveform
and power spectrum of their associated spatiotemporal principal components (ST‐PCs) show that the second and
third components correspond to oscillations with an annual period, while the first and fourth components exhibit
temporal variations associated with longer‐term trends (see Figure S3b in Text S1 in Supporting Information S1).
Given that color noise in GPS time series can lead to incorrect extraction of deformation signals, we employed a
Monte Carlo SSA method (MC‐SSA, Groth & Ghil, 2015) to test the statistical significance of these ST‐PCs
against hypothesized noise models. The results indicate that these components can be significantly
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distinguished from the hypothesized white‐plus‐power‐law noise. See Text S1 in Supporting Information S1 for
detailed descriptions and figures.

Accordingly, we identified ST‐PCs 1 and 4 as the major contributors to transient deformation in the TVG area,
accounting for ∼14.4% of the total variance. Figure 2a displays the detrended three‐component time series
overlaid with the corresponding reconstruction components, RC1 and RC4. Two periods of distinct transient
deformation can be identified, with the spatial patterns of horizontal and vertical motions illustrated in Figure 2b.

Figure 2. (a) The detrended time series (black dots) and the sum of the first and fourth reconstruction components from
MSSA (red lines). (b) Ground displacements of the three time periods shown by the colored shades in (a). Red and blue
arrows represent horizontal and vertical components, respectively. White circles in the leftmost subplot show April–June
2015 seismicity (Peak 3), and the purple star in the rightmost subplot labels the earthquake cluster in January 2019 (Peak 4).
Orange triangles mark the Dayoukeng fumarole.
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The first episode (EP1) occurred from June 2015 to October 2016, during which the six GPS stations experienced
overall ground subsidence of up to ∼8 mm and asymmetric inward horizontal motion. After a period of relatively
low deformation (<2 mm) over the next two years, the second transient episode (EP2) began in October 2018,
which was characterized by ground uplift of up to ∼10 mm and asymmetric outward horizontal motion, repre-
senting a nearly reversed deformation pattern compared to EP1.

4. Discussion
Many studies have shown that water mass redistribution in the shallow crust can induce the transient ground
movements observed in GNSS time series (e.g., Argus et al., 2014; Hsu et al., 2020). While the TVG area has
received significant annual precipitation, often exceeding 4,000 mm, comparisons between our MSSA‐filtered
GPS vertical time series and local rain gauge data reveal a pattern contrary to the expected elastic response of
ground motion to surface water loading (see Text S3 in Supporting Information S1). Specifically, periods of
decreasing rainfall coincided with subsidence (2015–2017), while increasing rainfall was associated with uplift
(2019–2021, details). This suggests that rainfall is unlikely to be the primary driver of the observed transient
ground deformation during our study period.

Multiple lines of evidence, including gas composition (Lee et al., 2008), gravity changes (Lien et al., 2022;
Mouyen et al., 2016), magnetotellurics (Komori et al., 2014), and seismic surveys (Y.‐C. Huang et al., 2017; Lin
et al., 2020), reveal prominent shallow hydrothermal systems associated with active volcanism in the TVG,
particularly around the Dayoukeng fumarole and Mt. Cising (Figure 1). Moreover, high‐resolution seismic to-
mography and relocated earthquakes from Pu, Lin, Lai, et al. (2020) suggest the presence of a shallow (∼2 km)
hydrothermal reservoir and a pathway for the vertical migration of volcanic fluids beneath Dayoukeng. Given the
substantial ground deformation observed around the Dayoukeng area, particularly at stations YMSM, YM05, and
YMN4 (Figure 2b), we will focus in the following sections on potential volcanic activities that may be linked to
these transient motions.

4.1. Potential Volcanic Processes for Transient Deformations

Pu et al. (2021a) proposed a working model for the driving mechanisms of volcanic fluids ascending beneath
Dayoukeng, based on spatiotemporal variations in earthquake focal mechanisms and fumarolic gas compositions
(Figures 3b and 3c). The model assumes a pre‐existing volcanic conduit at a depth of 2–4 km, sealed by cap‐rocks
and serving as a pathway for the migration of magmatic fluids from greater depths. As these fluids ascend along
the conduit, the increasing internal pressure can induce horizontal compressional stress in the surrounding rocks,
promoting reverse‐faulting earthquakes. This phase is followed by the increase in shallow (<2 km) normal‐
faulting events, as the arching cap‐rocks caused by fluid accumulation can induce sub‐vertical compressional
stress in the overlying layer. When subjected to excessive stress, the cap‐rocks may fracture, allowing the
discharge of magmatic fluids and leading to an increase in the ratio of total sulfur to carbon dioxide (St/CO2) in
the gases ultimately emitted at the surface.

While the model was informed by two periods of data, January 2014 to June 2015 and June 2015 to July 2016 (Pu
et al., 2021a), a notably high ratio of shallow normal faulting earthquakes and St/CO2 from July–December 2014
was closely followed by the onset of EP1 (Figure 3). Additionally, a later increase in normal seismicity during the
second half of 2015 likely contributed to further fracturing of the shallow crust beneath Dayoukeng, leading to
even greater gas release, as evidenced by the peak of St/CO2, and ground subsidence in 2016. These temporal
correlations suggest that the pressure and volume changes in the volcanic conduit system beneath Dayoukeng
may cause transient ground movements in the area.

To investigate this further, we conducted a simple modeling study of a pressurized source beneath Dayoukeng.
Assuming a shallow source based on Pu, Lin, Hsu, et al. (2020), we used data only from three near‐field stations
(YMSM, YM05, and YMN4), which exhibit prominent transient motions, to perform a grid search for the optimal
depth and pressure change that minimizes data misfit (details in Text S2 in Supporting Information S1). The
results demonstrate that a single vertical prolate with a depth range of 2–4 km is a plausible conduit model for the
observed transient displacements in both EP1 (a decompression of ∼120 bar) and EP2 (a compression of
∼150 bar) periods. Alternatively, a point source model at a depth of ∼2 km, which accommodates the shallow
hydrothermal reservoir near the top of the conduit, as indicated by Lin et al. (2020) and Pu, Lin, Hsu, et al. (2020),
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fits the data almost equally well. These findings suggest a consistency between our geodetic data and the proposed
working models established through geophysical and geochemical measurements.

Apart from systematic vertical motions observed during the two transient episodes, the asymmetric horizontal
movements and the significant transient displacement at YM03, which is located farther southeast of Dayoukeng,
suggest that complex subsurface sources are responsible for the surface deformation. The Shanchiao normal fault
crossing the TVG area, for example, shows a strong connection with the volcanism, as all active volcanic
features–such as hot springs, fumaroles, and volcanic earthquakes–are confined to the hanging‐wall. Lin
et al. (2020), based on seismic images from ambient noise and a local dense array, proposed that fracture zones
associated with the fault can allow magmatic fluids ascending from a deep crustal reservoir to feed extensive
shallow hydrothermal systems beneath the TVG. While no active fumarole was identified near YM03, potential
interactions among widespread subsurface hydrothermal systems or other unknown fault activities suggest the
need for multi‐source models. These models, not employed in this study due to limited geodetic data, can help
explain the complex deformation patterns observed in the TVG.

Figure 3. Temporal variations of geodetic, seismic, and geochemical measurements in the Dayoukeng area. (a) Vertical
ground displacements from GPS (red lines in Figure 2a). (b) Black, gray, and white histograms show monthly earthquake
numbers of shallow (<2 km) normal, reverse, and strike‐slip earthquakes, and gray triangles represent the ratio of normal‐
type earthquakes to the total number of all earthquake types (relocating catalog from Pu et al., 2021b). (c) The ratio of total
sulfur to carbon dioxide (St/CO2) in the gases emitted at the surface (data from Pu et al., 2021b).
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4.2. Spatiotemporal Variations in TVG Deformation and Seismicity

To investigate whether the TVG had experienced other similar deformation cycles as outlined earlier, we
applied MSSA to the time series from three long‐operating GPS stations, YM03, YM05, and YMSM (see
Texts S1–S5 in Supporting Information S1 for details). Figure 4a displays the detrended time series and their
primary transient signals (the sum of the first two RCs), from which the aforementioned 2015–2020 transient
episode as shown in Figure 2 can be clearly identified. Additionally, similar deformation patterns are observed

Figure 4. (a) The detrended time series (black dots) and the sum of the first twoMSSA reconstruction components of the three
long‐operating GPS stations (red lines). Blue histograms show earthquake counts every 3 months in the area (nonrelocated
catalog from TVO), with the four peaks described in the main text. (b) Ground displacements of the three time periods shown
by the colored shades in (a). Red and blue arrows represent horizontal and vertical components, respectively. Purple stars
label earthquake clusters in October 2009 (Peak 1, the leftmost subplot) and February 2014 (Peak 2, the rightmost subplot).
Orange triangles mark the Dayoukeng fumarole.
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at the three stations (Figure 4b), including: (a) uplift and outward motion from October 2008 to April 2010;
(b) subsidence and inward motion from April 2010 to February 2012; and (c) another phase of uplift and
outward motion from February 2012 to June 2015, which occurred right before EP1 shown in Figure 2.
Although the amplitudes of these displacements, approximately 2–3 mm in horizontal and ∼3–5 mm in
vertical, are significantly lower than those observed during the 2015–2020 transient episode, the MSSA‐
filtered time series clearly demonstrate the spatial and temporal repeatability of deformation cycles in the
TVG area, at least near Dayoukeng.

Deformation cycles, typically characterized by periods of ground uplift and subsidence, have been observed in
numerous volcanic systems worldwide, and variations in these cycles often correlate with changes in local
seismicity (e.g., Hill et al., 2003; Smith et al., 2009). Accordingly, we investigated the temporal distribution of
earthquakes from 2006 to 2021 in the TVG area. As shown in Figure 4a, three notable peaks in shallow earth-
quakes (depths <4 km) around the Dayoukeng area likely occurred concurrently with changes in deformation
episodes. Peaks 1 and 3 correspond to earthquake swarms in October 2009 (Pu et al., 2014) and April–June 2015
(Pu et al., 2021a), respectively. Pu et al. (2014) attributed the October 2009 swarm to active volcanism, citing its
high b‐value of 2.17 and the presence of pipe‐like seismic zone. Peak 4, moreover, includes ∼170 shallow events
in January 2019, clustered in a fumarole area just ∼1 km north of Dayoukeng (Figure 1). Although additional
evidence, such as geochemical data, is lacking, these correlations suggest that hydrothermal and volcanic pro-
cesses beneath Dayoukeng may have driven spatially and temporally consistent variations in seismicity and
deformation patterns in the area.

Peak 2, on the other hand, includes relatively deep earthquakes (3–6 km) located southeast of Mt. Shamao, one of
the latest eruptive units in TVG with low hydrothermal activity (Figure 1). This peak features a magnitude 4.2
earthquake in 12 February 2014–the second largest in TVG since 1900–and subsequent seismicity mostly
occurred afterward. While this peak was immediately followed by a minor bump in the MSSA‐filtered GPS time
series (Figure 4a), overall deformation trends remained steady from 2012 to 2015. Pu et al. (2017) proposed that
this earthquake sequence resulted from a combined synergistic effect of a collapsed reservoir filled with volcanic
fluids and faulting activities along the Shanchiao fault, a mechanism distinct from the three Dayoukeng clusters
mentioned above.

5. Conclusions
This is the first study to analyze transient ground deformation using continuous GPS records and to examine their
spatiotemporal relationship with seismic and geochemical observations of the Tatun Volcanic Group. By
applying MSSA to extract primary trend variations from noisy time series of six GPS stations spanning 2006 to
2021, we identified several episodes of subsidence and uplift, along with asymmetric horizontal motions directed
inward and outward toward Dayoukeng, the largest fumarole and hydrothermal area in TVG. Notably, three
earthquake clusters near Dayoukeng occurred around the same time as changes between deformation episodes.
The most significant of these, the initiation of subsidence in June 2015, is well explained by a hydrothermal
conduit model, supported by evidence from seismic focal mechanism, gas composition, and simple pressurized
source models. Our findings suggest that hydrothermal and volcanic processes beneath the TVGmay have driven
spatiotemporally consistent variations in seismicity and deformation patterns in the area, similar to those observed
in many other volcanic systems worldwide.

Data Availability Statement
The GPS time series data of the six TVO stations are available at Y. S. Huang et al. (2024). Both focal mech-
anisms and the St/CO2 ratio data can be accessed at Pu et al. (2021b). Maps were created through PyGMT (Uieda
et al., 2021) using Generic Mapping Tools (GMT) version 6 (Wessel et al., 2019).
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